12,273 research outputs found

    A Study of Allotropes of Selenium by the X-Ray Diffraction Method

    Get PDF

    X-Ray Study of Selenium in the Liquid and Colloidal State

    Get PDF

    Nuclear multifragmentation within the framework of different statistical ensembles

    Full text link
    The sensitivity of the Statistical Multifragmentation Model to the underlying statistical assumptions is investigated. We concentrate on its micro-canonical, canonical, and isobaric formulations. As far as average values are concerned, our results reveal that all the ensembles make very similar predictions, as long as the relevant macroscopic variables (such as temperature, excitation energy and breakup volume) are the same in all statistical ensembles. It also turns out that the multiplicity dependence of the breakup volume in the micro-canonical version of the model mimics a system at (approximately) constant pressure, at least in the plateau region of the caloric curve. However, in contrast to average values, our results suggest that the distributions of physical observables are quite sensitive to the statistical assumptions. This finding may help deciding which hypothesis corresponds to the best picture for the freeze-out stageComment: 20 pages, 7 figure

    PNL12 A RETROSPECTIVE STUDY OF DRUG TREATMENT PATTERNS AMONGST UK PRIMARY CARE PATIENTS WITH RESTLESS LEGS SYNDROME (RLS) BETWEEN I ST APRIL 2004 AND 3 I ST MARCH 2005

    Get PDF

    A Model for Phase Transition based on Statistical Disassembly of Nuclei at Intermediate Energies

    Full text link
    Consider a model of particles (nucleons) which has a two-body interaction which leads to bound composites with saturation properties. These properties are : all composites have the same density and the ground state energies of composites with k nucleons are given by -kW+\sigma k^{2/3} where W and \sigma are positive constants. W represents a volume term and \sigma a surface tension term. These values are taken from nuclear physics. We show that in the large N limit where N is the number of particles such an assembly in a large enclosure at finite temperature shows properties of liquid-gas phase transition. We do not use the two-body interaction but the gross properties of the composites only. We show that (a) the p-\rho isotherms show a region where pressure does not change as ρ\rho changes just as in Maxwell construction of a Van der Waals gas, (b) in this region the chemical potential does not change and (c) the model obeys the celebrated Clausius-Clapeyron relations. A scaling law for the yields of composites emerges. For a finite number of particles N (upto some thousands) the problem can be easily solved on a computer. This allows us to study finite particle number effects which modify phase transition effects. The model is calculationally simple. Monte-Carlo simulations are not needed.Comment: RevTex file, 21 pages, 5 figure

    PND31 DESCRIPTIVE STUDY OF THE PHARMACOLOGICAL TREATMENTS USED IN PATIENTS WITH DEPRESSION IN PARKINSON'S DISEASE (PD)

    Get PDF
    corecore